亚? 成人 一区_luluhei噜噜黑在线视频_国产无遮挡又黄又爽又色_亚洲 一区 二区_一级毛片播放_亚洲国产va精品久久久不卡综合

顛覆認知:SEI膜穩定使電池循環性能提升的說法或將改寫
發布時間:2019-10-22 10:13:00
關鍵詞:鋰電池動力電池

【研究背景】


固態電解質中間相(SEI)成膜劑在可充電電池系統中起著重要作用,因為它們可以提高電極和電解液的性能。碳酸酯基電解液提高石墨的穩定性是最成功的例子之一,特別是在碳酸丙烯酯(PC)的溶劑中,SEI成膜劑可以使其在鋰離子電池中具有更廣泛的應用(例如:低溫或高溫、高壓)。迄今為止,這種提高石墨穩定性的機理通常歸因于成膜作用,其中可以通過使用比溶劑還原電位更高的添加劑來改性SEI。對于大多數基于碳酸酯(碳酸乙烯酯(EC))(不含PC)的電解液,更堅固的SEI可以鈍化電極并減少電極表面上電解液成分的還原。此外,SEI還可以抑制PC基電解液中石墨的結構破壞(眾所周知的剝落問題)。


然而,本文中作者證明,石墨負極穩定性的提升并非得益于加入添加劑后表面形成穩定的SEI膜。作者發現添加劑的真正作用是改變電解液中的鋰(Li+)溶劑化結構。盡管添加劑會影響SEI的化學成分,但形成的SEI無法穩定石墨。研究表明,添加劑在電解液中起配位作用,從而改變了Li+-溶劑的相互作用。因此,添加劑最終決定了Li+離子或Li+團簇的行為。所以,用添加劑后石墨穩定性提高的真正原因是電解液本身的化學變化,而不是先前認為的SEI成膜效果。該研究以“New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries”為題發表在國際頂級期刊ACS Energy Lett.上。


【內容表述】


一、有爭議的添加劑作用


電解液添加劑對石墨負極穩定性的影響有爭議的問題如圖1a所示。首先在石墨基鋰離子電池(即石墨與鋰)中研究了含有硫酸乙烯酯(DTD)添加劑的PC基電解液??梢钥闯?,在PC基電解液中使用DTD后石墨的容量穩定在353 mAh g-1,其中SEI可以在石墨表面上形成(圖1b),沒有持續的電解液還原和/或石墨剝離(圖1c)。將幾個循環后電池拆解,取出該SEI包覆的石墨并組裝新的電池。結果發現SEI包覆的石墨在含6% DTD的相同電解液中可以連續工作并有353 mAh g-1容量,但在不含DTD的電解液中卻立即失效。在沒有DTD添加劑的新電池中,SEI包覆的石墨(圖1e)在0.94 V左右均觀察到嚴重的電解液還原和石墨剝離現象。該結果表明,SEI層無法穩定石墨以實現可逆的Li+脫嵌。這些結果證實了SEI抑制石墨剝離的能力取決于電解液中是否有足夠的DTD添加劑;影響石墨性能的關鍵因素(例如:Li+脫嵌入或Li+-溶劑共嵌)實際上是電解液的成分。


圖1. 添加劑對石墨中Li+脫嵌的影響。


二、電解液中的殘余添加劑


在過去的20年中,許多添加劑(例如:碳酸亞乙烯酯(VC)、LiBOB、金屬離子、鈉鹽或鉀鹽、乙烯基亞硫酸乙烯酯(VES)、1,3-丙烯磺內酯、三氧化硫、磷酸酯、三(三甲基三甲硅烷基)亞磷酸酯和呋喃酮)通常用作SEI成膜劑,可保護石墨陽極,并確保石墨中可逆的Li+脫嵌。在本文中,作者發現重復充放電過程中添加劑(例如DTD)的消耗很有限。在初始循環中,SEI在石墨表面上快速形成,然而其重量、形態或組成沒有明顯變化(圖2a)。XPS分析進一步證實了這種現象。與原始狀態相比,圖2b, c中石墨電極的C 1s,S 2p和O 1s峰的強度、形狀和擬合顯示出在第一個循環中與原始狀態相比有明顯的變化,表明了在第一個循環中SEI的形成,此后變化很小。


該結果表明DTD僅在初始循環中才可能參與SEI的形成,而后沒有進一步消耗。這種推測是基于對電極上形成的SEI的分析,而殘余電解液中的DTD進一步證明了這一點。通過13C NMR和1HNMR定量測定殘余的DTD及其濃度。結果表明,即使在長時間循環后,殘余電解液中仍存在超過5 wt%的DTD。此外,當使用含有6wt%DTD的新鮮電解液和SEI包覆的石墨組裝成新電池時,消耗的DTD是很少的。該結果還證實了SEI保持在石墨表面上,并且DTD添加劑影響電解液性質并抑制分解。因此,必須重新考慮使用添加劑后石墨穩定性提高的真正原因是電解液化學的變化,而不是先前認為的SEI成膜效果。


圖2. 電解液中殘余添加劑的確認。

 

三、添加劑的協調作用


通過對含有不同DTD濃度的PC基電解液進行拉曼光譜分析,可以獲得對電解液配位化學的深入了解。首先,觀察到,一旦LiPF6鹽溶解,擬合峰出現在718和721 cm-1附近,該峰對應于PC分子的不對稱環變形,數量減少并且移向更高的波數;其歸因于Li+-PC團簇的形成和電解液中游離PC分子(即Li+[PC]12.56[PF6-])的濃度降低。在將DTD添加到電解液中(低于6 wt%DTD)時,由于Li+團簇(即Li+-PC&DTD)中Li+-DTD和Li+-PC的相互作用不同,因此Li+-PC的峰變寬了。DTD分子可以與Li+(即Li+[DTD]x[PC]12.56[PF-]6,x = 0,0.24,0.48,0.73)競爭配位。當DTD濃度為6 wt%(即Li+[DTD]0.73[PC]12.56[PF6-])時,Li+團簇和游離PC明顯分離。


該結果表明,DTD主要控制著Li+團簇的協調情況(即Li+-DTD&PC),其中Li+團簇中Li+-PC單元的強度和數量變弱并減?。▓D3a),從而釋放出大量游離PC。簡而言之,當電解液中添加的DTD量增加時,Li+團簇可以從Li+-PC變為Li+-PC&DTD或Li+-DTD&PC。1H NMR分析(圖3b)支持了該結論,該分析表明DTD中的H化學位移移至更高的波數,因此證實了DTD與電解液中Li+的配位。通常,Li+陽離子可以很好地溶解在PC溶劑中,并且可能具有4-6個主要由溶劑分子組成的鄰域。在溶劑中添加6 wt%DTD后,DTD可能會取代一些溶劑分子并參與構建第一個溶劑化中心Li+陽離子的殼。取代的溶劑分子表現出屬于“游離溶劑”的特征,從而導致拉曼光譜中的峰從游離溶劑到Li+簇中的配位分子(即Li+-DTD&PC,Li+[DTD]0.73[PC]12.56[PF6-]。加入6 wt%DTD后,Li+第一溶劑化殼中PC分子的頻率降低,證實了圖3c中的結果。


圖3d,e顯示了在電解液中含和不含DTD的情況下模擬的Li+溶劑化結構??梢钥闯?,DTD確實可以充當配位體并取代PC分子,從而改變Li+溶劑化結構。因此,在圖3f-j中進一步顯示了PC、LiPF6和不同含量的DTD添加劑之間的分子相互作用的示意圖,以使Li+-溶劑的相互作用更加清晰。Li+-溶劑相互作用的降低可以使Li+在石墨中脫嵌變得更容易,從而避免了由Li+-溶劑共嵌引起的石墨剝離問題,并提高了石墨的穩定性。


圖3. 碳酸酯電解液中多價離子對鋰離子配位結構的影響。

 

四、從酯基到醚基電解液的適用性


該機理被證明也適用于醚基電解液,其中通過使用添加劑也可抑制Li+-溶劑的共嵌入。當在醚基電解液中引入高達6 wt%的DTD添加劑時,對于TFSI-離子的S-N-S彎曲振動,有一個明顯的拉曼移向更高的波數,如圖4a中的拉曼光譜所示。該結果表明Li+-TFSI-的相互作用很強,并且DTD可以代替醚溶劑分子與Li+接觸(Li+[DTD]x[DME]4.94[DOL]7.36[TFSI-],x=0,0.21,0.45,0.66)。以此方式,可以大大降低Li+-溶劑相互作用的強度,并且最終可以預期在沒有Li+-溶劑共嵌入的情況下將Li+在石墨中脫嵌。該機制與在鋰電池中石墨的放電曲線中觀察到的結果一致,其中當DTD含量約為6 wt%時,石墨的可逆容量增加并達到正常值(圖4b)。另外,鋰離子轉移數隨著DTD量的增加而降低。


圖4. 添加劑在醚基電解液中對石墨穩定性的協調作用。

 

五、添加劑的協調能力及其普遍性


通過改變添加劑的類型,我們可以進一步說明其作為改變電解液中Li+溶劑化結構的配位劑的作用。圖4c顯示了不同物質表面上的靜電勢,廣泛用作陽離子-π相互作用的定性度量。通常,DTD具有兩個高度負的S=O鍵,并且可以與Li+牢固結合。另一方面,通常使用的VC添加劑與Li+具有相對較弱的哥倫布相互作用。實際上,這已在PC基電解液中得到了證實,其中DTD可使電解液工作良好,但VC始終會失效,即使VC的含量從6 wt%增加到12 wt%(即Li+[VC]x[PC]12.56[PF-]6,x = 1.06,2.12)。同樣,碳酸乙烯亞乙酯(VEC)添加劑也不能有效改善PC基電解液中的石墨穩定性,因為VC和VEC的協調能力不足以與PC競爭。


此外,使用弱配位添加劑(例如:VC、EC和PC)的醚基電解液在1.0-0.1 V電壓范圍內具有更嚴重的電解液分解和Li+-溶劑嵌入石墨的現象(圖4c),這進一步證實了添加劑協調能力的重要性(圖4d)。仿真模擬可以進一步證實該結論,具體而言,當將DTD添加劑添加到電解液中時,出現在Li+周圍的醚基溶劑的頻率顯著降低(圖4e)。圖4f,g清楚地表明乙醚溶劑可以被DTD取代,從而導致弱的Li+-溶劑相互作用。因此,圖4h-l進一步顯示了DOL/DME,LiTFSI和不同量的DTD添加劑之間的分子相互作用的示意圖,以使Li+-溶劑相互作用的變化清晰可見。


圖5. 不同系統中溶劑和溶質之間分子相互作用的示意圖。



此外,當在PC中的1.0M LiPF6或DOL/DME中的1.0M LiTFSI的電解液中使用不同的添加劑(例如:VC、EC或PC)時,Li+-溶劑的相互作用在圖5a-c中進一步顯示。基于這些結果,提出了另一種觀點,這為石墨在超高濃度電解液體系中的穩定性帶來了重要的新見識。結果表明,在較高的鹽濃度下Li+-溶劑相互作用降低或溶劑的配位能力較弱可能是石墨穩定的根本原因。換句話說,如果可以通過強配位添加劑(例如DTD)充分削弱Li+-溶劑的相互作用,則SEI效應可能不是最關鍵的因素,并且可能不需要完全聚集。此外,作者研究了與文獻報道的高濃度電解液概念相關的加性效應,發現高濃度電解液中溶劑/Li+的比例僅為約1-3(即Li+[溶劑]1-3[陰離子],圖5d-g),低于現在的電解液(例如Li+[DTD]x[PC]12.56[PF-]6)和市售電解液中的數量(例如Li+[EC]7.49[DEC]4.12[PF6-], 1.0 M LiPF6-EC/DEC)。因此,廣泛研究的(超高)濃縮電解液概念和所提出的電解液體系中的累加效應代表改變Li+溶劑化結構的不同方式(例如:Li+-溶劑相互作用)。


通過加成效應改變Li+-溶劑的相互作用,能夠降低電解質的濃度,從而以更低的成本獲得更好的性能。為了為該假設提供進一步的證據,作者研究了以TEGDME為溶劑的Li-O2電池中使用的醚基的電解液。同樣,發現使用DTD添加劑可以將石墨穩定在355 mAh g-1左右,其中由于DTD添加劑的存在,Li+-溶劑相互作用減弱(圖5h,i,Li+[DTD]0.66[TEGDME]4.46[TFSI-])。根據這些結果,很容易理解為什么在溶劑中使用其他碳酸酯溶劑(例如:EC、EMC、DMC)代替PC可以穩定石墨,即使使用少量添加劑也是如此。原因是Li+-溶劑與溶劑和添加劑的配位結構發生了變化。


因此,在鋰離子、Li-S和Li-O2電池常用的電解液體系中,系統地證明了添加劑在不同種類電解液中的配位作用(圖6)。添加劑在碳酸酯和醚基電解液中的配位作用為優化金屬離子電池使用不同溶劑(例如亞砜、砜、腈、磷或硅基溶劑)提供了一種新方法。


圖6. 證實添加劑在不同類型電解液中對石墨負極穩定性的協調作用。


【結論】


總而言之, Li+溶劑化結構隨添加劑的變化對石墨穩定性具有顯著影響,這與通常認為的SEI成膜添加劑作用不同。添加劑實際上可以充當配位劑,從而改變Li+配位結構以及電解液中Li+-溶劑的相互作用。因此,可以通過鹽的濃度、添加劑或溶劑組成來調節石墨中競爭性的Li+脫嵌或Li+-溶劑共插入。這一新發現已在常用的碳酸酯和醚基電解液中得到證實,并為了解添加劑的作用提供了更深刻的見解。作者進一步推測,電解液的配位化學可能是這種提高電池性能的根本原因,因為它會影響電解液和電極的行為。這項工作為推動離子電池系統的發展提供了重要見解。

 

Jun Ming, Zhen Cao, Yingqiang Wu, Wandi Wahyudi, Wenxi Wang, Xianrong Guo, Luigi Cavallo, Jang-Yeon Hwang, Atif Shamim, Lain-Jong Li, Yang-Kook Sun, Husam N. Alshareef, New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries, ACS Energy Lett. 2019, DOI:10.1021/acsenergylett.9b01441


稿件來源: 能源學人
相關閱讀:
發布
驗證碼:
主站蜘蛛池模板: 免费操比视频_久久久久久精品无码午夜按摩师_中文乱码字幕高清在线观看_91精品国产91久久久娜娜_黄色影视网址_色爱99_啊轻点内射在线视频_www.久久艹 | 97国产在线视频_国产色在线播放_西西人体大胆444WWW_久章草在线视频免费观看_国产成人综合在线视频_久久国产福利播放_成人免费黄视频_色吧综合 | 国产成人一区二区三区影院动漫_国产成人在线视频免费观看_久久99女女久久99久久_www.久久爱.com狼人_国产又爽又刺激的视频_日韩中文在线观看_天天草天天爱_狠狠爱天天操 | 午夜精品影院_中文JAPANESE在线播放_精品三级_林深见鹿40集高清免费观看_国产一级αv片免费观看_青草久久国产_超碰个人97_广西美女色炮150p图 | 国产亚洲精品久久19p_肉人妻丰满av无码久久不卡_色综合久久久久久久粉嫩_好男人www在线社区_深夜A级毛片免费无码视频_久久91精品_精品国产91aⅴ一区二区三区_国产精品永久免费 | 综合网日日天干夜夜久久_成人激情开心_色婷婷六月亚洲综合香蕉_爆乳邻居肉欲中文字幕_ye321夜色资源网_你懂得视频在线_真实单亲乱L仑对白视频_亚洲国产精品人人做人人爱 | 亚洲欧美日韩中文字幕二_日产精品久久久久久久_国产一区二区三区高清_国产一级a不收费_亚洲AV无码第一区二区三区_懂色av粉嫩av蜜臀av_国产午夜理论不卡在线观看_天天射色综合 | 免费岛国片_人妻中文乱码在线网站_蜜臀av国内精品久久久_69国产精品视频免费观看_成人久久免费网站_欧美性色黄大片WWW喷水_亚洲精品国产高清_无码专区亚洲制服丝袜 | 一区二区三区精品久久久_国产欧美日韩成人_亚洲免费一级_欧美视频一区二区三区_91桃色在线免费观看_在线看一级片_午夜av亚洲国产素人资源网_免费午夜无码视频在线观看 | 亚洲视频一区二区三区四区_一级全黄视频_干逼毛片_懂色av一区二区三区四区五区_69视频免费看_久久国产精_青草视频免费_青青青在线播放视频国产 | 亚洲激情综合视频_一本之道加勒比在线观看_丰满的年轻搜子在线观看_亚洲国产成人精品女人_精品国产aⅴ一区二区三区_久久777国产线看观看精品_成人a级免费视频_av天天干 | 亚洲精品一区二区在线播放_久久国产精品一国产精品金尊_久久国产精品一国产精品_在线国产日韩_狠狠色综合网站久久久久久久_8060yy中文无码视频在线观看_美女色站_中文第一区 | 亚洲不卡视频在线_亚洲福利网址_啦啦啦中文免费观看在线_草久视频免费观看_丁香五月天一二三四在线视频_成人午夜国产内射主播_九九久久精品视频_真人与拘做受免费视频 久久久无码精品亚洲日韩啪啪网站_国产三级三级看三级_天堂一区人妻无码_国产成人久久精品_最近中文字幕2019视频1_思思久热_亚洲成AV人在线观看成年美女_日韩少妇内射免费播放18禁裸乳 | 俄罗斯美女肛交内射WWWC〇M_国产成人亚洲综合网站_国产成人无码AV在线播放DVD_无码视频在线观看_天天操夜夜草_亚洲综合一区自偷自拍_国产在线观看成人_在线免费av网址 | 亚洲精品国产91_日本高清视频色WWW色_午夜一级影院_色人阁26uuu_国产成人精品小视频_av天堂久久天堂av色综合网_呻吟翘臀后进爆白浆_亚洲啪啪aⅴ一区二区三区9色 | 亚洲狠狠婷婷综合久久_小少呦萝粉国产_XYX性爽欧美_女人夜夜春高潮爽av片_91人人妻人人做人人爽京东_美女极度色诱视频国产_日韩欧美xxxx_国内熟妇人妻色在线视频 | 在线黄色免费观看_国产精品午夜无码av体验区_国产精品免费_区二区三区观看_国产成人欧美_久久精品第一页_四川丰满少妇A级毛片_日韩欧美特级片_色哟哟一区二区 | 免费av在_久久久国产精品一区_8x福利精品第一导航_亚洲日韩国产欧美久久久_婷婷一区二区三区四区_91色在线观看_又爽又黄又无遮挡网站_日本高清成本人视频一区 | 亚洲超碰97人人做人人爱_国产精品日日做人人爱_久久精品夜色国产亚洲av_人妻体内射精一区二区_久久久精品波多野结衣_最新91在线视频_久久9色_国产成视频在线观看 | 国产一二三四在线_18禁超污无遮挡无码免费游戏_精品美女久久久_久久九九99视频_成人av中文字幕_日韩一区二区福利_亚洲.国产.中文慕字在线_天堂中文资源库官网 | 天天色图综合网_有码一区二区三区_91久久国产综合久久91_无码一区国产欧美视频_久久久久99精品_咕咚影院国语在线播放_国产AV激情久久无码天堂_日本黄色中文字幕 | 无毛一级片_9I精品福利一区二区三区蜜桃_精品免费观看_99热这里只有精品地址_亚洲国产精品一区二区成人_久久久精品一品道一区_国产的精品一区二区在线观看_国产亚洲精品久久yy5099 | 高清不卡免费视频_猛烈顶弄H禁欲老师H春潮视频_国产老肥熟精品大全_亚洲欧美成人a毛片_亚洲精品在_第一区免费在线观看_免费国产自久久久久三四区久久_亚洲男人的天堂网 | 国产一级一级特黄女人精品毛片_久久精品一区二区视频_久久久久久久国产毛片_孩交精品乱子片_亚洲欧美一区二区三区视频_国产成人久久一区二区三区_人妖av_边做边爱边吃奶叫床的视频 | 伊人思思_亚洲精品无码久久_中文字幕成人在线视频_国产精品免费视频软件_在线观看91免费视频_婷婷激情综合色五月久久竹菊影视_手机看日韩片_日韩视频成人 | 色噜噜久久综合伊人一本_伊人久久丁香色婷婷啪啪_久久狠狠爱亚洲综合影院_日韩一级免费观看_日本内射FREERAPE视频_国产欧美一区二区精品秋霞影院_亚洲一区国产二区_中文字幕一二三综合a | 国产成人AV区一区二区三_国产91清纯白嫩初高中在线观看_欧美国产日韩一区二区三区_日韩东京热无码AV一区_少妇高潮太爽了在线播放_亚洲精品国产精品国自产在线_国产91艳遇在线观看_黄色三级网站在线观看 | 手机久草视频分类在线观看_国产高清不卡_亚洲AV无码AV制服另类专区_亚洲在线第一区_国产熟妇高潮呻吟喷水_成人欧美视频_亚洲日韩视频免费观看_国模无码人体一区二区 | 上课被cao的好爽高潮免费视频_年轻的朋友4免费观看韩剧_黄色动漫在线免费观看_午夜理论片最新午夜理论剧_综合色爱_黄页网站在线观看_好涨好硬好爽免费视频_亚洲国产午夜99综合 | 黄视频在线观看视频_美女一级黄色_亚洲欧美成人综合_91精品国产自产在线观看_99精品视频国产精品_色视频网站在线_国产男男被猛男躁免费视频_99热精品在线观看 | 国产精品美脚玉足脚交欧美_一级片久久久_午夜中文_亚洲黄片一级在线广播_男人天堂成人在线_性生交大片免费看_亚洲第一女人av_成人毛片18女人毛片免费 | av色偷偷_欧美xyx_人人澡人人射_久久人妻天天AV_超碰777_亚洲欧美不卡视频在线播放_国产欧美在线一区二区_高潮娇喘抽搐喷水潮喷视频网站 | 盗摄牛牛av影视一区二区_全国最大黄色网址_深夜福利网_一级特黄网站_乱丶伦丶图丶区一区二区_毛片黄片一级片_日本福利网_亚洲av高清不卡久久 | 做爰裸体激情2_午夜叫声理论片人人影院_亚洲视频在线观看免费_一区二区在线欧美日韩中文_伊人久久免费视频_亚洲综合成人专区片_久久久精品高清_国产精品亚洲片夜色在线 | 91在线观_四虎私人影院_自拍偷拍3p_mm1313午夜视频_视频在线三区_亚洲免费资源_香蕉乱码成人久久天堂爱免费_国产真人真事毛片视频 | 中文字幕55页_亚洲国产精品无码久久久五月天_麻豆短视频传媒_免费色视频在线观看_一区二区三区无码免费看_免费一级做a爰片性色毛片_亚洲欧美一级_久久久亚洲蜜桃 | 色视频91_hd老熟女bbn_少妇无码中文丰满Av_男女免费在线观看_国产香线蕉手机视频在线观看_夜夜高潮夜夜爽夜夜爱_91资源在线观看_日本少妇寂寞少妇aaa | 亚洲视频aaa_日本19禁啪啪免费观看www_国产一区二区三区四区www._亚洲精品久久久久中文字幕欢迎你_亚洲精品50p_av无码午夜福利一区二区三区_亚洲第一免费播放区_91一区在线 | 欧美人与禽交无码免费视频_一级黄色视屏_久久久亚洲裙底偷窥综合_天天碰夜夜操_av不卡一区二区_日本网站在线免费观看_一级片大奶子_国产精品女教师久久二区二区 深夜福利免费在线观看_欧洲性开放少妇ZOZO_又大又粗又硬又爽又黄毛片_欧洲精品_亚洲欧美成人_18禁黄网站禁片免费观看国产_日本少妇XXX做受_视频在线观看91 | 亚洲av网站_人人干日日_44444kk在线观看三免费_亚洲啪啪av_专干老熟女视频在线观看_国产孕妇a片全部精品_99热爱久久99热爱九九热爱_三级黄在线观看 亚洲精品久久久蜜桃网尤妮丝_日日日日日_亚洲一区h_国产网站在线免费观看_精品999日本久久久影院_女教师在办公室被强在线播放_在线视频久_夜夜骑天天射 | xxxx漂亮少妇hdxxxx_久久香蕉国产线看观看手机_青青草手机在线观看_人妻激情另类乱人伦人妻_狠狠色狠狠色88综合日日91_有码在线_日韩av综合_好爽好痛好湿好硬视频免费 |